标准化流(NFS)是灵活的显式生成模型,已被证明可以准确地对复杂的现实世界数据分布进行建模。但是,它们的可逆性限制对存在于嵌入较高维空间中的较低维歧管上的数据分布施加局限性。实际上,这种缺点通常通过在影响生成样品质量的数据中添加噪声来绕过。与先前的工作相反,我们通过从原始数据分布中生成样品来解决此问题,并有有关扰动分布和噪声模型的全部知识。为此,我们确定对受扰动数据训练的NFS隐式表示最大可能性区域中的歧管。然后,我们提出了一个优化目标,该目标从扰动分布中恢复了歧管上最有可能的点。最后,我们专注于我们利用NFS的明确性质的3D点云,即从对数似然梯度中提取的表面正态和对数类样本本身,将Poisson表面重建应用于精炼生成的点集。
translated by 谷歌翻译
适应不断发展的环境是所有自动驾驶系统不可避免地面临的安全挑战。但是,现有的图像和视频驾驶数据集未能捕获现实世界的可变性质。在本文中,我们介绍了最大的多任务合成数据集,用于自动驾驶,转移。它显示了云彩,雨水强度,一天中的时间以及车辆和行人密度的离散和连续变化。Shift采用全面的传感器套件和几个主流感知任务的注释,可以调查在域转移水平越来越高的感知系统性能下降,从而促进了持续适应策略的发展,以减轻此问题并评估模型的鲁棒性和一般性。我们的数据集和基准工具包可在www.vis.xyz/shift上公开获得。
translated by 谷歌翻译
最近隐含的神经表示(INRS)作为各种数据类型的新颖且有效的表现。到目前为止,事先工作主要集中在优化其重建性能。这项工作从新颖的角度来调查INRS,即作为图像压缩的工具。为此,我们提出了基于INR的第一综合压缩管线,包括量化,量化感知再培训和熵编码。使用INRS进行编码,即对数据示例的过度装备,通常是较慢的秩序。为缓解此缺点,我们基于MAML利用META学习初始化,以便在较少的渐变更新中达到编码,这也通常提高INR的速率失真性能。我们发现,我们对INR的源压缩方法非常优于类似的事先工作,具有专门针对图像专门设计的常见压缩算法,并将基于速率 - 失真自动分析器的差距缩小到最先进的学习方法。此外,我们提供了对我们希望促进这种新颖方法对图像压缩的未来研究的重要性的广泛消融研究。
translated by 谷歌翻译
最近出现了一系列用于估计具有单个正向通行证的深神经网络中的认知不确定性的新方法,最近已成为贝叶斯神经网络的有效替代方法。在信息性表示的前提下,这些确定性不确定性方法(DUM)在检测到分布(OOD)数据的同时在推理时添加可忽略的计算成本时实现了强大的性能。但是,目前尚不清楚dums是否经过校准,可以无缝地扩展到现实世界的应用 - 这都是其实际部署的先决条件。为此,我们首先提供了DUMS的分类法,并在连续分配转移下评估其校准。然后,我们将它们扩展到语义分割。我们发现,尽管DUMS尺度到现实的视觉任务并在OOD检测方面表现良好,但当前方法的实用性受到分配变化下的校准不良而破坏的。
translated by 谷歌翻译
最近归一化流量(NFS)在建模3D点云上已经证明了最先进的性能,同时允许在推理时间以任意分辨率进行采样。然而,这些基于流的模型仍然需要长期训练时间和大型模型来代表复杂的几何形状。这项工作通过将NFS的混合物应用于点云来增强它们的代表性。我们展示在更普遍的框架中,每个组件都学会专门以完全无监督的方式专门化对象的特定子区域。通过将每个混合组件与相对小的NF实例化,我们通过更好的细节生成点云,而与基于单流量的模型相比,使用较少的参数,并且大大减少推理运行时。我们进一步证明通过添加数据增强,各个混合组件可以学习以语义有意义的方式专注。基于ShapEnet​​ DataSet评估NFS对生成,自动编码和单视重建的混合物。
translated by 谷歌翻译
Convolutional neural networks (CNN) define the state-of-the-art solution on many perceptual tasks. However, current CNN approaches largely remain vulnerable against adversarial perturbations of the input that have been crafted specifically to fool the system while being quasi-imperceptible to the human eye. In recent years, various approaches have been proposed to defend CNNs against such attacks, for example by model hardening or by adding explicit defence mechanisms. Thereby, a small "detector" is included in the network and trained on the binary classification task of distinguishing genuine data from data containing adversarial perturbations. In this work, we propose a simple and light-weight detector, which leverages recent findings on the relation between networks' local intrinsic dimensionality (LID) and adversarial attacks. Based on a re-interpretation of the LID measure and several simple adaptations, we surpass the state-of-the-art on adversarial detection by a significant margin and reach almost perfect results in terms of F1-score for several networks and datasets. Sources available at: https://github.com/adverML/multiLID
translated by 谷歌翻译
Despite the success of convolutional neural networks (CNNs) in many academic benchmarks for computer vision tasks, their application in the real-world is still facing fundamental challenges. One of these open problems is the inherent lack of robustness, unveiled by the striking effectiveness of adversarial attacks. Current attack methods are able to manipulate the network's prediction by adding specific but small amounts of noise to the input. In turn, adversarial training (AT) aims to achieve robustness against such attacks and ideally a better model generalization ability by including adversarial samples in the trainingset. However, an in-depth analysis of the resulting robust models beyond adversarial robustness is still pending. In this paper, we empirically analyze a variety of adversarially trained models that achieve high robust accuracies when facing state-of-the-art attacks and we show that AT has an interesting side-effect: it leads to models that are significantly less overconfident with their decisions, even on clean data than non-robust models. Further, our analysis of robust models shows that not only AT but also the model's building blocks (like activation functions and pooling) have a strong influence on the models' prediction confidences. Data & Project website: https://github.com/GeJulia/robustness_confidences_evaluation
translated by 谷歌翻译
气溶胶颗粒通过吸收和散射辐射并影响云特性在气候系统中起重要作用。它们也是气候建模的最大不确定性来源之一。由于计算限制,许多气候模型不包括足够详细的气溶胶。为了表示关键过程,必须考虑气雾微物理特性和过程。这是在使用M7 Microphysics的Echam-Ham全球气候气溶胶模型中完成的,但是高计算成本使得以更精细的分辨率或更长的时间运行非常昂贵。我们的目标是使用机器学习以足够的准确性模仿微物理学模型,并通过在推理时间快速降低计算成本。原始M7模型用于生成输入输出对的数据以训练其上的神经网络。我们能够学习变量的平均$ r^2 $得分为$ 77.1 \%$ $。我们进一步探讨了用物理知识为神经网络提供信息和限制的方法,以减少群众侵犯并实施质量积极性。与原始型号相比,在GPU上,我们达到了高达64倍的加速。
translated by 谷歌翻译
量子计算硬件的功能增加,并实现深量子电路的挑战需要完全自动化和有效的工具来编译量子电路。要以一系列与特定量子计算机体系结构有关的天然大门表达任意电路,对于使算法在量子硬件提供商的整个景观中可移植。在这项工作中,我们提出了一个能够转换和优化量子电路的编译器,针对基于穿梭的捕获离子量子处理器。它由剑桥量子计算机的量子电路框架pytket上的自定义算法组成。评估了广泛的量子电路的性能,与标准Pytket相比,与标准Qiskit汇编相比,栅极计数可以降低到3.6倍,最高为2.2,而我们获得的栅极计数与相似的栅极计数相比相比,针对AQT线性静态捕获离子地址架构的Pytket扩展。
translated by 谷歌翻译
地震处理通常需要抑制收集数据时出现的倍数。为了解决这些工件,从业人员通常依靠基于ra的转换算法作为移民后的调节。但是,这种传统方法既耗时又依赖参数,使其相当复杂。在这项工作中,我们提出了一种基于学习的替代方案,可提供竞争成果,同时降低其用法的复杂性,从而使其适用性民主化。尽管仅接受合成学培训,但在推断复杂的现场数据时,我们在推断复杂的现场数据时会观察到出色的性能。此外,广泛的实验表明,我们的建议可以保留数据的固有特征,避免了不希望的过度平滑结果,同时删除了倍数。最后,我们对模型进行了深入的分析,在此分析中,我们可以确定主要的超参数具有物理事件的影响。据我们所知,这项研究的开创者将神经网络的拆箱用于幻想过程,从而帮助用户了解网络内部运行。
translated by 谷歌翻译